

    
      
          
            
  
SunFounder Robot HAT

Robot HAT is a multifunctional expansion board that allows Raspberry Pi to be quickly turned into a robot. An MCU is on board to extend the PWM output and ADC input for the Raspberry Pi, as well as a motor driver chip, Bluetooth module, I2S audio module and mono speaker. As well as the GPIOs that lead out of the Raspberry Pi itself.

It also comes with a Speaker, which can be used to play background music, sound effects and implement TTS functions to make your project more interesting.

Accepts 7-12V PH2.0 2pin power input with 2 power indicators. The board also has a user available LED and a button for you to quickly test some effects.

In this document, you will get a full understanding of the interface functions of the Robot HAT and the usage of these interfaces through the Python robot-hat library provided by SunFounder.

[image: _images/robot_hat.jpg]


	Hardware Introduction

	Install the robot-hat

	Robot HAT API Reference
	Basic
	class Pin - control I/O pins

	class ADC - analog to digital converter

	class PWM - pulse width modulation

	class i2c - IIC Bus

	class Music - notes and beats

	class TTS - text to speech

	class Motor - motor control

	class Servo - 3-wire pwm servo driver





	Modules
	class ADXL345 - accelemeter

	class Buzzer - passive buzzer

	class DS18X20 - ds18x20 series temperature sensor

	class Joystick - 3-axis joystick

	class RGB_LED - rgb LED

	class Ultrasonic - ultrasonic ranging sensor

	class Sound - sound sensor

















          

      

      

    

  

    
      
          
            
  
Hardware Introduction

[image: _images/picar_x_pic7.png]

	Left/Right Motor Port
	
	2-channel XH2.54 motor ports.


	The left port is connected to GPIO 4 and the right port is connected to GPIO 5.


	API: class Motor - motor control, 0 for left motor port, 1 for right motor port.






	I2C Pin
	
	2-channel I2C pins from Raspberry Pi.


	API: class i2c - IIC Bus






	PWM Pin
	
	12-channel PWM pins, P0-P12.


	API: class PWM - pulse width modulation






	ADC Pin
	
	4-channel ADC pins, A0-A3.


	API: class ADC - analog to digital converter






	Digital Pin
	
	4-channel digital pins, D0-D3.


	API: class Pin - control I/O pins






	Battery Indicator
	
	Two LEDs light up when the voltage is higher than 7.8V.


	One LED lights up in the 6.7V to 7.8V range.


	Below 6.7V, both LEDs turn off.






	LED
	
	Set by your program. (Outputting 1 turns the LED on; Outputting 0 turns it off.)


	API: class Pin - control I/O pins, you can use Pin("LED") to define it.






	RST Button
	
	Short pressing RST Button causes program resetting.


	Long press RST Button till the LED lights up then release, and you will disconnect the Bluetooth.






	USR Button
	
	The functions of USR Button can be set by your programming. (Pressing down leads to a input “0”; releasing produces a input “1”. )


	API: class Pin - control I/O pins, you can use Pin("SW") to define it.






	Power Switch
	
	Turn on/off the power of the robot HAT.


	When you connect power to the power port, the Raspberry Pi will boot up. However, you will need to switch the power switch to ON to enable Robot HAT.






	Power Port
	
	7-12V PH2.0 2pin power input.


	Powering the Raspberry Pi and Robot HAT at the same time.






	Bluetooth Module
	
	Since the Raspberry Pi comes with Bluetooth in slave mode, there will be pairing problems when connecting with cell phones. To make it easier for the Raspberry Pi to connect to the Ezblock Studio, we added a separate Bluetooth module.


	Ezblock Studio is a custom graphical programming application developed by SunFounder for Raspberry Pi, for more information please refer to: Ezblock Studio 3 [https://docs.sunfounder.com/projects/ezblock3/en/latest/].






	Bluetooth Indicator
	
	The Bluetooth indicator keeps turning on at a well Bluetooth connection, blink at a Bluetooth disconnection, blink fast at a signal transmission.












          

      

      

    

  

    
      
          
            
  
Install the robot-hat

robot-hat is the supported library for the Robot HAT.

Type this command into the terminal to install the Robot HAT package.

git clone https://github.com/sunfounder/robot-hat.git
cd robot-hat
sudo python3 setup.py install






Note

Run setup.py to download some necessary components. You may have a network problem and the download may fail. At this point you may need to download again. In the following cases, type Y and press Enter to continue the process.



[image: _images/dowload_code.png]




          

      

      

    

  

    
      
          
            
  
Robot HAT API Reference


Basic



	class Pin - control I/O pins

	class ADC - analog to digital converter

	class PWM - pulse width modulation

	class i2c - IIC Bus

	class Music - notes and beats

	class TTS - text to speech

	class Motor - motor control

	class Servo - 3-wire pwm servo driver








Modules



	class ADXL345 - accelemeter

	class Buzzer - passive buzzer

	class DS18X20 - ds18x20 series temperature sensor

	class Joystick - 3-axis joystick

	class RGB_LED - rgb LED

	class Ultrasonic - ultrasonic ranging sensor

	class Sound - sound sensor











          

      

      

    

  

    
      
          
            
  
class Pin - control I/O pins

Usage

from robot_hat import Pin

pin = Pin("D0")                      # create a Pin object from a digital pin
val = pin.value()                    # read the value on the digital pin

pin.value(0)                         # set the digital pin to low level





Constructors

class robot_hat.Pin(value) : The Pin() is the basic object to control I/O pins. It has methods to set the pin mode (input, output, etc.) and methods to get or set the level of a digital pin.

Methods


	value - Read or set the value on the digital pin, the value is 0/1.




Pin.value() # Without parameters, read gpio level, high level returns 1, low level returns 0.

Pin.value(0)  # set to low level
Pin.value(1)  # set to high level






	Set the value to the digital pin, same as value.




Pin.on() # set to high level
#off() # set to low level
#high() # set to high level
#low() # set to low level






	mode - Set the mode of GPIO to IN or OUT.




Pin.mode(GPIO.IN)  # set gipo to INPUT mode





Availble Pins


	"D0": The Digital pin 0.


	"D1": The Digital pin 1.


	"D2": The Digital pin 2.


	"D3": The Digital pin 3.


	"D4": The left motor pin.


	"D5": The right motor pin.


	"D6"


	"D7"


	"D8"


	"D9"


	"SW": The USR button.


	"LED": The LED on the board.








          

      

      

    

  

    
      
          
            
  
class ADC - analog to digital converter

Usage

from robot_hat import ADC

adc = ADC("A0")                     # create an analog object from a pin
val = adc.read()                    # Read values from analog pins





Constructors

class robot_hat.ADC(pin): Create an ADC object associated with the given pin. This allows you to then read analog values on that pin.

Methods


	read - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.




ADC.read()









          

      

      

    

  

    
      
          
            
  
class PWM - pulse width modulation

Usage

from robot_hat import PWM

pwm = PWM('P0')                                 # create a PWM object from a pin
PWM.freq(*freq)                                 #Frequency (0-65535, unit Hz)
PWM.prescaler(*prescaler)                       #Prescaler
PWM.period(*arr)
PWM.pulse_width(*pulse_width)                   # Pulse width (pulse_width < period)
PWM.pulse_width_percent(*pulse_width_percent)   # Duty cycle (0-100)





Constructors

class robot_hat.PWM(channel): Create a PWM object associated with the given pin. This allows you set up the pwm function on that pin.

Methods


	freq - Set the frequency of the pwm channel.




PWM.freq(50)






	prescaler - Set the prescaler for the pwm channel.




PWM.prescaler(50)






	period - Set the period of the pwm channel.




PWM.period(100)






	pulse_width - Set the pulse width of the pwm channel.




PWM.pulse_width(10)






	pulse_width_percent - Sets the pulse width percentage of the pwm channel.




PWM.pulse_width_percent(50)









          

      

      

    

  

    
      
          
            
  
class i2c - IIC Bus

Usage

from robot_hat import I2C

i2c = I2C(1)                         # create on bus 1
i2c = I2C(1, I2C.MASTER)             # create and init as a master

i2c.send('abc')      # send 3 bytes
i2c.send(0x42)       # send a single byte, given by the number
data = i2c.recv(3)   # receive 3 bytes

i2c.is_ready(0x42)           # check if slave 0x42 is ready
i2c.scan()                   # scan for slaves on the bus, returning a list of valid addresses
i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42, starting at address 2 in the slave
i2c.mem_write('abc', 0x42, 2, timeout=1000) # write 'abc' (3 bytes) to memory of slave 0x42, starting at address 2 in the slave, timeout after 1 second.





Constructors

class robot_hat.I2C(num): Create an I2C object associated with the given num. This allows you to use i2c on that device.

Methods


	is_ready - Check if slave 0x42 is ready.




I2C.is_ready(addr)






	scan - Scan for slaves on the bus, returning.




I2C.scan()






	send - Send several bytes to slave with address.




I2C.send(send,addr,timeout)






	recv - Receive one or several bytes.




data = i2c.recv(recv,addr,timeout)   # receive 3 bytes






	mem_write - Write to the memory of an I2C device.




I2C.mem_write(data, addr, memaddr, timeout)






	mem_read - Read from the memory of an I2C device.




I2C.mem_read(data, addr, memaddr, timeout)









          

      

      

    

  

    
      
          
            
  
class Music - notes and beats

Usage

from robot_hat import Music, Buzzer

m = Music()        # create a music object
buzzer = Buzzer("P0")
m.tempo(120)          # set current tempo to 120 beat per minute

# play middle C, D, E, F ,G, A, B every 1 beat.
buzzer.play(m.note("Middle C"), m.beat(1))
buzzer.play(m.note("Middle D"), m.beat(1))
buzzer.play(m.note("Middle E"), m.beat(1))
buzzer.play(m.note("Middle F"), m.beat(1))
buzzer.play(m.note("Middle G"), m.beat(1))
buzzer.play(m.note("Middle A"), m.beat(1))
buzzer.play(m.note("Middle B"), m.beat(1))

song = './music/test.wav'

m.music_set_volume(80)
print('Music duration',m.sound_length(file_name))
m.sound_play(song)





Constructors

class robot_hat.Music(): Create a Music object. This allows you to then get or control music!

Methods


	note - Gets the frequency of the note. The input string must be the constant NOTE.




Music.note("Middle D")
Music.note("High A#")






	beat - Get milisecond from beats. Input value can be float, like 0.5 as half beat, or 0.25 as quarter beat.




Music.beat(0.5)
Music.beat(0.125)






	tempo - Get/set the tempo, input value is in bmp(beat per second).




Music.tempo()
Music.tempo(120)






	play_tone_for - Play tone. Input is note and beat, like Music.note("Middle D"), Music.beat(0.5).




Music.play_tone_for(Music.note("Middle D"), Music.beat(0.5))






	sound_play - Play music files.




sound_play(file_name)






	background_music - Background music playback (file name, number of loops, starting position of music file, volume).




background_music(file_name, loops=-1, start=0.0, volume=50)






	music_set_volume - Set volume




music_set_volume(value=50)






	music_stop - stop




music_stop()






	music_pause - pause




music_pause()






	music_unpause - unpause




music_unpause()






	sound_length - Return the duration of the music file.




len = sound_length(file_name)









          

      

      

    

  

    
      
          
            
  
class TTS - text to speech

Usage

from robot_hat import *

tts = TTS()                     # create a TTS object
tts.say('hello')                # write word

# tts.write('hi')                # write word
tts.lang('en-GB')                # change language

tts.supported_lang()            # return language





Constructors

class robot_hat.TTS(engine): Create a TTS object, engine could be "espeak" as Espeak, "gtts" as Google TTS and polly as AWS Polly.

Methods


	say - Write word on TTS.




TTS.say(words)






	lang - Change on TTS.




TTS.lang(language)






	supported_lang - Inquire all supported language.




TTS.supported_lang()






	parameter adjustment




# amp: amplitude, volume
# speed: speaking speed
# gap: gap
# pitch: pitch
def espeak_params(self, amp=None, speed=None, gap=None, pitch=None)









          

      

      

    

  

    
      
          
            
  
class Motor - motor control

Usage

from robot_hat import Motor

motor = Motor()                     # Create a motor object
motor = motor.wheel(100)            # Set the motor speed to 100





Constructors

class robot_hat.Motor(): Create a motor object, you can use it to control the motors.

Methods


	wheel - Control the speed and direction of the motor.




# The speed range is -100 to 100, and the positive and negative values represent the direction of rotation of the motor.
motor.wheel(100)

# The second parameter, filled with 0 or 1, is used to control a specific motor.
motor.wheel(100,1)









          

      

      

    

  

    
      
          
            
  
class Servo - 3-wire pwm servo driver

Usage

from robot_hat import Servo, PWM

pin = PWM("P0")
ser = Servo(pin)                      # create a Servo object
val = ser.angle(60)                   # set the servo angle





Constructors

class robot_hat.Servo(pin): Create a Servo object associated with the given pin. This allows you to set the angle values.


Methods


	angle - set the angle values between -90 and 90.




Servo.angle(90)











          

      

      

    

  

    
      
          
            
  
class ADXL345 - accelemeter

Usage

from robot_hat import ADXL345

accel = ADXL345()                     # create an ADXL345 object
x_val = accel.read(accel.X)           # read an X(0) value
y_val = accel.read(1)                 # read an Y(1) value
z_val = accel.read(2)                 # read a Z(2) value





Constructors

class robot_hat.ADXL345(address=0x53): Create an ADXL345 object. This
allows you to then read adxl345 accelerator values.

Methods


	read - Read the value with the axis and return it. The unit is gravity acceleration(about 9.8m/s2).




ADXL345.read(axis)





Constants


	X - x axis


	Y - y axis


	Z - z axis








          

      

      

    

  

    
      
          
            
  
class Buzzer - passive buzzer

Usage

from robot_hat import PWM, Buzzer, Music

pwm = PWM("A0")                 # create a pwm object
buzzer = Buzzer(pwm)            # create a Buzzer object with PWM object
music = Music()                 # create music object

buzzer.play(music.note("Low C"), music.beat(1))   # play low C for 1 beat
buzzer.play(music.note("Middle C#"))              # play middle C sharp
buzzer.off()                                      # turn buzzer off





Constructors

class robot_hat.Buzzer(pwm): Create a Buzzer object associated with the given pwm object. This will allow you to control the buzzer.

Methods


	on - Turn the buzzer on with a square wave.




Buzzer.on()






	off - Turn the buzzer off.




Buzzer.off()






	freq - Set the frequency of the square wave.




Buzzer.freq(frequency)






	play - Make the buzzer sound at a specific frequency and stop at a ms delay time.




Buzzer.play(freq, ms)
Buzzer.play(freq)









          

      

      

    

  

    
      
          
            
  
class DS18X20 - ds18x20 series temperature sensor

Usage

from robot_hat import Pin, DS18X20

pin = Pin("D0")             # create pin object
ds = DS18X20(pin)           # create a DS18X20 object

ds.read(ds.C)               # read temperature in celsius(1)
ds.read(0)                  # read temperature in Fahrenheit(0)





Constructors

class robot_hat.DS18X20(pin): Create a DS18X20 object associated with the given pin object. This allows you to read temperature from DS18X20.

Methods


	DS18X20.read - Read temperature with the giving unit. It returns a float value if only one ds18x20 is connected to the pin, or it will return a list of all sensor values.




DS18X20.read(unit)






	DS18X20.scan - Scan the connected DS18X20 and return the roms address list.




DS18X20.scan()






	DS18X20.read_temp - Read temperature(s) with the giving rom(s).




DS18X20.read_temp(rom)





Constants


	DS18X20.C - Celsius


	DS18X20.F - Fahrenheit








          

      

      

    

  

    
      
          
            
  
class Joystick - 3-axis joystick

Usage

from robot_hat import Joystick, ADC, Pin

x_pin = ADC("A0")
y_pin = ADC("A1")
btn_pin = Pin("D1")

joystick = Joystick(x_pin, y_pin, btn_pin)         # create a Joystick object
val = joystick.read(0)                             # read an axis value
status = joystick.read_status()                    # read the status of joystick





Constructors

class robot_hat.Joystick(pin): Create a Joystick object associated with the given pin. This allows you to read values from Joystick.

Methods


	read - Read the value on the given pins and return them.




Joystick.read(Xpin, Ypin, Btpin)






	read_status - read the status of joystick.




Joystick.read_status()









          

      

      

    

  

    
      
          
            
  
class RGB_LED - rgb LED

Usage

from robot_hat import PWM, RGB_LED

r = PWM("P0")
g = PWM("P1")
b = PWM("P2")

rgb = RGB_LED(r, g, b)                       # Create a RGB_LED object
val = rgb.write('#FFFFFF')                   # Write in the color in hexadecimal.






Constructors

class robot_hat.RGB_LED(Rpin, Gpin, Bpin): Create a RGB_LED object associated with the given pin. This allows you set the color of RGB LED.
Input Rpin, Gpin, Bpin must be PWM object from robot_hat.PWM.

Methods


	write - Writing a specific color to the RGB LED, the color value is represented by hexadecimal for red, green and blue (RGB). Each color has a minimum value of 0 (00 in hexadecimal) and a maximum value of 255 (FF in hexadecimal). Hexadecimal values are written with a # sign followed by three or six hexadecimal characters.




RGB_LED.write(color)











          

      

      

    

  

    
      
          
            
  
class Ultrasonic - ultrasonic ranging sensor

Usage

from robot_hat import Ultrasonic, Pin

trig = Pin("D0")
echo = Pin("D1")

ultrasonic = Ultrasonic(trig, echo)             # create an Ultrasonic object
val = ultrasonic.read()                         # read an analog value





Constructors

class robot_hat.Ultrasonic(trig, echo): Create a Ultrasonic object associated with the given pin. This allows you to then read distance value.


Methods


	read - Read distance values.

Ultrasonic.read(trig, echo)















          

      

      

    

  

    
      
          
            
  
class Sound - sound sensor

Usage

from robot_hat import Sound, ADC

pin = ADC("A0")
sound = Sound(pin)                         # create a Sound object from a pin
val = sound.read_raw()                     # read an analog value

average_val = sound.read_raw(time = 100)   # read an average analog value





Constructors

class robot_hat.Sound(pin): Create a Sound object associated with the given pin. This allows you to read analog values on that pin.

Methods


	read_raw - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.




Sound.read_raw()









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/plus.png





_static/file.png





_static/minus.png





_images/robot_hat.jpg





_images/dowload_code.png
[Using /usz/1ib/pychons/dist-packages
searching for RP1.GPIO==0.7.0

st maccn: RPi.GPIO 0.7.0

2aaing RP1.GPIO 0.7.0 to easy-install.pth file

vsing /usz/150/pytnons/dist-packages
[Finished processing dependencies for robot-hat==1.0.0
fic:1 ntep://raspbian. raspberrypi.org/raspbian buster InRelease
fic:2 ntep://archive. raspberrypi.org/debian buster InRelease
Reading package 1ists... Done
Building aependency cree
[reading state information. .. Done
96 packages can be upgraded. Run 'apt 1ist —-upgradable’ to see them.
Reading package 1ists... Done
Building dependency cree
[reading state information... Done
he following addivional packages will be installe
espeak-data libespeakl libportaudio? libsonicO
he following NEW packages will be installed:
espeak espeak-data libespeakl libportaudio? 1ibsonico
0 upgraded, 5 newly installed, 0 to remove and 96 not upgraded.
veed o get 9,888 B/1,217 kB of archives.
[arcer this operavion, 2,974 kB of addivional disk space will be used.
Do you want to continue? [¥/n] |






_images/picar_x_pic7.png
Left Motor Right Motor
Port Port

|/ PWMPin

* |,— ADCPin

Bluetooth
Indicator — |

Bluetooth
Module |

Battery |
Indicator

LED —
I\— Power
Switch
RST
Button
USR Power Port

Button (7~12V)





nav.xhtml

    
      Table of Contents


      
        		
          SunFounder Robot HAT
        


        		
          Hardware Introduction
        


        		
          Install the robot-hat
        


        		
          Robot HAT API Reference
          
            		
              Basic
              
                		
                  class Pin - control I/O pins
                


                		
                  class ADC - analog to digital converter
                


                		
                  class PWM - pulse width modulation
                


                		
                  class i2c - IIC Bus
                


                		
                  class Music - notes and beats
                


                		
                  class TTS - text to speech
                


                		
                  class Motor - motor control
                


                		
                  class Servo - 3-wire pwm servo driver
                


              


            


            		
              Modules
              
                		
                  class ADXL345 - accelemeter
                


                		
                  class Buzzer - passive buzzer
                


                		
                  class DS18X20 - ds18x20 series temperature sensor
                


                		
                  class Joystick - 3-axis joystick
                


                		
                  class RGB_LED - rgb LED
                


                		
                  class Ultrasonic - ultrasonic ranging sensor
                


                		
                  class Sound - sound sensor
                


              


            


          


        


      


    
  

